A Invariant for Greedoids and Antimatroids
نویسنده
چکیده
We extend Crapo’s β invariant from matroids to greedoids, concentrating especially on antimatroids. Several familiar expansions for β(G) have greedoid analogs. We give combinatorial interpretations for β(G) for simplicial shelling antimatroids associated with chordal graphs. When G is this antimatroid and b(G) is the number of blocks of the chordal graph G, we prove β(G) = 1− b(G).
منابع مشابه
Characterizations of Non-simple Greedoids and Antimatroids based on Greedy Algorithms
A language containing no words with repeated elements is simple. And a language which is not necessary simple is called non-simple in this paper. Björner and Ziegler [3] presented three plausible extensions of greedoids to non-simple languages. We shall show that when choosing one of their definitions they called ’polygreedoid’ and replacing generalized bottleneck functions of the objective fun...
متن کاملOn Brylawski's Generalized Duality
We introduce a notion of duality—due to Brylawski—that generalizes matroid duality to arbitrary rank functions. This allows us to define a generalization of the matroid Tutte polynomial. This polynomial satisfies a deletion-contraction recursion, where deletion and contraction are defined in this more general setting. We explore this notion of duality for greedoids, antimatroids and demi-matroi...
متن کاملSecretary problem: graphs, matroids and greedoids
In the paper the generalisation of the well known"secretary problem"is considered. The aim of the paper is to give a generalised model in such a way that the chosen set of the possible best $k$ elements have to be independent of all rejected elements. This condition is formulated using the theory of greedoids and in their special cases -- matroids and antimatroids. Examples of some special case...
متن کاملAntimatroids, Betweenness, Convexity
Korte and Lovász [12, 13] founded the theory of greedoids . These combinatorial structures characterize a class of optimization problems that can be solved by greedy algorithms. In particular, greedoids generalize matroids , introduced earlier by Whitney [16]. Antimatroids , introduced by Dilworth [3] as particular examples of semimodular lattices, make up another class of greedoids. Antimatroi...
متن کاملLinear Relations for a Generalized Tutte Polynomial
Brylawski proved the coefficients of the Tutte polynomial of a matroid satisfy a set of linear relations. We extend these relations to a generalization of the Tutte polynomial that includes greedoids and antimatroids. This leads to families of new identities for antimatroids, including trees, posets, chordal graphs and finite point sets in Rn. It also gives a “new” linear relation for matroids ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997